3.913 \(\int \frac{1}{a+b+2 a x^2+a x^4} \, dx\)

Optimal. Leaf size=359 \[ -\frac{\log \left (-\sqrt{2} \sqrt [4]{a} x \sqrt{\sqrt{a+b}-\sqrt{a}}+\sqrt{a+b}+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}-\sqrt{a}}}+\frac{\log \left (\sqrt{2} \sqrt [4]{a} x \sqrt{\sqrt{a+b}-\sqrt{a}}+\sqrt{a+b}+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}-\sqrt{a}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a+b}-\sqrt{a}}-\sqrt{2} \sqrt [4]{a} x}{\sqrt{\sqrt{a+b}+\sqrt{a}}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}+\sqrt{a}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a+b}-\sqrt{a}}+\sqrt{2} \sqrt [4]{a} x}{\sqrt{\sqrt{a+b}+\sqrt{a}}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}+\sqrt{a}}} \]

[Out]

-ArcTan[(Sqrt[-Sqrt[a] + Sqrt[a + b]] - Sqrt[2]*a^(1/4)*x)/Sqrt[Sqrt[a] + Sqrt[a + b]]]/(2*Sqrt[2]*a^(1/4)*Sqr
t[a + b]*Sqrt[Sqrt[a] + Sqrt[a + b]]) + ArcTan[(Sqrt[-Sqrt[a] + Sqrt[a + b]] + Sqrt[2]*a^(1/4)*x)/Sqrt[Sqrt[a]
 + Sqrt[a + b]]]/(2*Sqrt[2]*a^(1/4)*Sqrt[a + b]*Sqrt[Sqrt[a] + Sqrt[a + b]]) - Log[Sqrt[a + b] - Sqrt[2]*a^(1/
4)*Sqrt[-Sqrt[a] + Sqrt[a + b]]*x + Sqrt[a]*x^2]/(4*Sqrt[2]*a^(1/4)*Sqrt[a + b]*Sqrt[-Sqrt[a] + Sqrt[a + b]])
+ Log[Sqrt[a + b] + Sqrt[2]*a^(1/4)*Sqrt[-Sqrt[a] + Sqrt[a + b]]*x + Sqrt[a]*x^2]/(4*Sqrt[2]*a^(1/4)*Sqrt[a +
b]*Sqrt[-Sqrt[a] + Sqrt[a + b]])

________________________________________________________________________________________

Rubi [A]  time = 0.261469, antiderivative size = 359, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {1094, 634, 618, 204, 628} \[ -\frac{\log \left (-\sqrt{2} \sqrt [4]{a} x \sqrt{\sqrt{a+b}-\sqrt{a}}+\sqrt{a+b}+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}-\sqrt{a}}}+\frac{\log \left (\sqrt{2} \sqrt [4]{a} x \sqrt{\sqrt{a+b}-\sqrt{a}}+\sqrt{a+b}+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}-\sqrt{a}}}-\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a+b}-\sqrt{a}}-\sqrt{2} \sqrt [4]{a} x}{\sqrt{\sqrt{a+b}+\sqrt{a}}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}+\sqrt{a}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a+b}-\sqrt{a}}+\sqrt{2} \sqrt [4]{a} x}{\sqrt{\sqrt{a+b}+\sqrt{a}}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a+b}+\sqrt{a}}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b + 2*a*x^2 + a*x^4)^(-1),x]

[Out]

-ArcTan[(Sqrt[-Sqrt[a] + Sqrt[a + b]] - Sqrt[2]*a^(1/4)*x)/Sqrt[Sqrt[a] + Sqrt[a + b]]]/(2*Sqrt[2]*a^(1/4)*Sqr
t[a + b]*Sqrt[Sqrt[a] + Sqrt[a + b]]) + ArcTan[(Sqrt[-Sqrt[a] + Sqrt[a + b]] + Sqrt[2]*a^(1/4)*x)/Sqrt[Sqrt[a]
 + Sqrt[a + b]]]/(2*Sqrt[2]*a^(1/4)*Sqrt[a + b]*Sqrt[Sqrt[a] + Sqrt[a + b]]) - Log[Sqrt[a + b] - Sqrt[2]*a^(1/
4)*Sqrt[-Sqrt[a] + Sqrt[a + b]]*x + Sqrt[a]*x^2]/(4*Sqrt[2]*a^(1/4)*Sqrt[a + b]*Sqrt[-Sqrt[a] + Sqrt[a + b]])
+ Log[Sqrt[a + b] + Sqrt[2]*a^(1/4)*Sqrt[-Sqrt[a] + Sqrt[a + b]]*x + Sqrt[a]*x^2]/(4*Sqrt[2]*a^(1/4)*Sqrt[a +
b]*Sqrt[-Sqrt[a] + Sqrt[a + b]])

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{a+b+2 a x^2+a x^4} \, dx &=\frac{\int \frac{\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}}}{\sqrt [4]{a}}-x}{\frac{\sqrt{a+b}}{\sqrt{a}}-\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}+\frac{\int \frac{\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}}}{\sqrt [4]{a}}+x}{\frac{\sqrt{a+b}}{\sqrt{a}}+\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}\\ &=\frac{\int \frac{1}{\frac{\sqrt{a+b}}{\sqrt{a}}-\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 \sqrt{a} \sqrt{a+b}}+\frac{\int \frac{1}{\frac{\sqrt{a+b}}{\sqrt{a}}+\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 \sqrt{a} \sqrt{a+b}}-\frac{\int \frac{-\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}}}{\sqrt [4]{a}}+2 x}{\frac{\sqrt{a+b}}{\sqrt{a}}-\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}+\frac{\int \frac{\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}}}{\sqrt [4]{a}}+2 x}{\frac{\sqrt{a+b}}{\sqrt{a}}+\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}} x}{\sqrt [4]{a}}+x^2} \, dx}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}\\ &=-\frac{\log \left (\sqrt{a+b}-\sqrt{2} \sqrt [4]{a} \sqrt{-\sqrt{a}+\sqrt{a+b}} x+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}+\frac{\log \left (\sqrt{a+b}+\sqrt{2} \sqrt [4]{a} \sqrt{-\sqrt{a}+\sqrt{a+b}} x+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-2 \left (1+\frac{\sqrt{a+b}}{\sqrt{a}}\right )-x^2} \, dx,x,-\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}}}{\sqrt [4]{a}}+2 x\right )}{2 \sqrt{a} \sqrt{a+b}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-2 \left (1+\frac{\sqrt{a+b}}{\sqrt{a}}\right )-x^2} \, dx,x,\frac{\sqrt{2} \sqrt{-\sqrt{a}+\sqrt{a+b}}}{\sqrt [4]{a}}+2 x\right )}{2 \sqrt{a} \sqrt{a+b}}\\ &=-\frac{\tan ^{-1}\left (\frac{\sqrt{-\sqrt{a}+\sqrt{a+b}}-\sqrt{2} \sqrt [4]{a} x}{\sqrt{\sqrt{a}+\sqrt{a+b}}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a}+\sqrt{a+b}}}+\frac{\tan ^{-1}\left (\frac{\sqrt{-\sqrt{a}+\sqrt{a+b}}+\sqrt{2} \sqrt [4]{a} x}{\sqrt{\sqrt{a}+\sqrt{a+b}}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{\sqrt{a}+\sqrt{a+b}}}-\frac{\log \left (\sqrt{a+b}-\sqrt{2} \sqrt [4]{a} \sqrt{-\sqrt{a}+\sqrt{a+b}} x+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}+\frac{\log \left (\sqrt{a+b}+\sqrt{2} \sqrt [4]{a} \sqrt{-\sqrt{a}+\sqrt{a+b}} x+\sqrt{a} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt{a+b} \sqrt{-\sqrt{a}+\sqrt{a+b}}}\\ \end{align*}

Mathematica [C]  time = 0.0709081, size = 119, normalized size = 0.33 \[ \frac{i \tan ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a+i \sqrt{a} \sqrt{b}}}\right )}{2 \sqrt{b} \sqrt{a+i \sqrt{a} \sqrt{b}}}-\frac{i \tan ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a-i \sqrt{a} \sqrt{b}}}\right )}{2 \sqrt{b} \sqrt{a-i \sqrt{a} \sqrt{b}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b + 2*a*x^2 + a*x^4)^(-1),x]

[Out]

((-I/2)*ArcTan[(Sqrt[a]*x)/Sqrt[a - I*Sqrt[a]*Sqrt[b]]])/(Sqrt[a - I*Sqrt[a]*Sqrt[b]]*Sqrt[b]) + ((I/2)*ArcTan
[(Sqrt[a]*x)/Sqrt[a + I*Sqrt[a]*Sqrt[b]]])/(Sqrt[a + I*Sqrt[a]*Sqrt[b]]*Sqrt[b])

________________________________________________________________________________________

Maple [B]  time = 0.167, size = 913, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x^4+2*a*x^2+a+b),x)

[Out]

-1/8/(a+b)^(1/2)/a/b*ln(-x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)-(a+b)^(1/2))*(2*(a^2+a*b)^(1/2)-2*a)^(1/2
)*(a^2+a*b)^(1/2)-1/8/(a+b)^(1/2)/b*ln(-x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)-(a+b)^(1/2))*(2*(a^2+a*b)^
(1/2)-2*a)^(1/2)-1/(a+b)^(1/2)/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((-2*x*a^(1/2)+(2*(a*
(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))+1/4/(a+b)^(1/2)/a/b/(4*a^(1/2)*(
a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((-2*x*a^(1/2)+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(
1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)*(a^2+a*b)^(1/2)
+1/4/(a+b)^(1/2)/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((-2*x*a^(1/2)+(2*(a*(a+b))^(1/2)
-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(2*(a^2+a*b)^(
1/2)-2*a)^(1/2)+1/8/(a+b)^(1/2)/a/b*ln(x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)+(a+b)^(1/2))*(2*(a^2+a*b)^(
1/2)-2*a)^(1/2)*(a^2+a*b)^(1/2)+1/8/(a+b)^(1/2)/b*ln(x^2*a^(1/2)+x*(2*(a*(a+b))^(1/2)-2*a)^(1/2)+(a+b)^(1/2))*
(2*(a^2+a*b)^(1/2)-2*a)^(1/2)+1/(a+b)^(1/2)/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((2*x*a^
(1/2)+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))-1/4/(a+b)^(1/2)/a/b/
(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((2*x*a^(1/2)+(2*(a*(a+b))^(1/2)-2*a)^(1/2))/(4*a^(1
/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(2*(a^2+a*b)^(1/2)-2*a)^(1/2)*(a^2
+a*b)^(1/2)-1/4/(a+b)^(1/2)/b/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2)*arctan((2*x*a^(1/2)+(2*(a*(a
+b))^(1/2)-2*a)^(1/2))/(4*a^(1/2)*(a+b)^(1/2)-2*(a*(a+b))^(1/2)+2*a)^(1/2))*(2*(a*(a+b))^(1/2)-2*a)^(1/2)*(2*(
a^2+a*b)^(1/2)-2*a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{a x^{4} + 2 \, a x^{2} + a + b}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^4+2*a*x^2+a+b),x, algorithm="maxima")

[Out]

integrate(1/(a*x^4 + 2*a*x^2 + a + b), x)

________________________________________________________________________________________

Fricas [B]  time = 1.52051, size = 1195, normalized size = 3.33 \begin{align*} \frac{1}{4} \, \sqrt{\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} + 1}{a b + b^{2}}} \log \left ({\left ({\left (a^{2} b + a b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} + b\right )} \sqrt{\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} + 1}{a b + b^{2}}} + x\right ) - \frac{1}{4} \, \sqrt{\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} + 1}{a b + b^{2}}} \log \left (-{\left ({\left (a^{2} b + a b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} + b\right )} \sqrt{\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} + 1}{a b + b^{2}}} + x\right ) - \frac{1}{4} \, \sqrt{-\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} - 1}{a b + b^{2}}} \log \left ({\left ({\left (a^{2} b + a b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} - b\right )} \sqrt{-\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} - 1}{a b + b^{2}}} + x\right ) + \frac{1}{4} \, \sqrt{-\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} - 1}{a b + b^{2}}} \log \left (-{\left ({\left (a^{2} b + a b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} - b\right )} \sqrt{-\frac{{\left (a b + b^{2}\right )} \sqrt{-\frac{1}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}} - 1}{a b + b^{2}}} + x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^4+2*a*x^2+a+b),x, algorithm="fricas")

[Out]

1/4*sqrt(((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) + 1)/(a*b + b^2))*log(((a^2*b + a*b^2)*sqrt(-1/(a^3
*b + 2*a^2*b^2 + a*b^3)) + b)*sqrt(((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) + 1)/(a*b + b^2)) + x) -
1/4*sqrt(((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) + 1)/(a*b + b^2))*log(-((a^2*b + a*b^2)*sqrt(-1/(a^
3*b + 2*a^2*b^2 + a*b^3)) + b)*sqrt(((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) + 1)/(a*b + b^2)) + x) -
 1/4*sqrt(-((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) - 1)/(a*b + b^2))*log(((a^2*b + a*b^2)*sqrt(-1/(a
^3*b + 2*a^2*b^2 + a*b^3)) - b)*sqrt(-((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) - 1)/(a*b + b^2)) + x)
 + 1/4*sqrt(-((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) - 1)/(a*b + b^2))*log(-((a^2*b + a*b^2)*sqrt(-1
/(a^3*b + 2*a^2*b^2 + a*b^3)) - b)*sqrt(-((a*b + b^2)*sqrt(-1/(a^3*b + 2*a^2*b^2 + a*b^3)) - 1)/(a*b + b^2)) +
 x)

________________________________________________________________________________________

Sympy [A]  time = 0.616945, size = 63, normalized size = 0.18 \begin{align*} \operatorname{RootSum}{\left (t^{4} \left (256 a^{2} b^{2} + 256 a b^{3}\right ) - 32 t^{2} a b + 1, \left ( t \mapsto t \log{\left (64 t^{3} a^{2} b + 64 t^{3} a b^{2} - 4 t a + 4 t b + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x**4+2*a*x**2+a+b),x)

[Out]

RootSum(_t**4*(256*a**2*b**2 + 256*a*b**3) - 32*_t**2*a*b + 1, Lambda(_t, _t*log(64*_t**3*a**2*b + 64*_t**3*a*
b**2 - 4*_t*a + 4*_t*b + x)))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^4+2*a*x^2+a+b),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError